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Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov
instabilities at arbitrary Atwood numbers

Karnig O. Mikaelian
University of California, Lawrence Livermore National Laboratory, Livermore, California 94551

~Received 22 August 2002; published 27 February 2003!

We present explicit analytic expressions for the evolution of the bubble amplitude in Rayleigh-Taylor~RT!
and Richtmyer-Meshkov RM instabilities. These expressions are valid from the linear to the nonlinear regime
and for arbitrary Atwood numberA. Our method is to convert from the linear to the nonlinear solution at a
specific valueh* of the amplitude for which explicit analytic expressions have been given previously forA
51 @K. O. Mikaelian, Phys. Rev. Lett.80, 508~1998!#. By analyzing a recent extension of Layzer’s theory to
arbitrary A @V. N. Goncharov, Phys. Rev. Lett.88, 134502~2002!#, we find a simple transformation that
generalizes our solutions to arbitraryA. We compare this model with another explicit model attributed to Fermi
and with numerical simulations. Fermi’s model agrees with numerical simulations for the RT case but its
extension to the RM case disagrees with simulations. The model proposed here agrees with hydrocode calcu-
lations for both RT and RM instabilities.

DOI: 10.1103/PhysRevE.67.026319 PACS number~s!: 47.20.2k
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I. INTRODUCTION, NOTATION, AND SUMMARY

The purpose of this paper is to present simple, expli
and analytic expressions for the evolution of perturbation
Rayleigh-Taylor~RT! @1# and Richtmyer-Meshkov~RM! @2#
instabilities from the linear to the nonlinear regime. The
instabilities have been extensively studied by analytical,
merical, as well as experimental techniques@3#. They have
important applications in astrophysics@4#, inertial-
confinement fusion@5#, and industry@6#. Despite this body of
work we know of only one other analytic model that cove
the linear as well as the nonlinear evolution explicitly, and
is the model that Layzer@7# attributed to Fermi.

RT and RM instabilities arise at the interface between t
fluids subjected to a constant acceleration and a shock
spectively. The linear regime, during which the perturbat
amplitude h remains much smaller than the perturbati
wavelengthl, is well at hand as given by the original inve
tigators@1,2#. Much of the subsequent research has focu
on the nonlinear regime~but not all: issues of density grad
ents, ablation, compressibility, convergence, viscosity, m
rial strength, etc., have been and continue to be actively
searched in the linear regime; in this paper we ignore all s
effects!. Consequently, a great deal has been learned a
the nonlinear regime. However, with the exception of F
mi’s model noted above, we know of no explicit analyt
model that describes the complete evolution.

There are, of course, several methods or models in wh
the solution to our problem is found by solving numerica
an ordinary or partial differential equation~s!, or by perform-
ing a sum over a large or infinite number of terms@8#. Our
emphasis is on explicit analytical expressions forh(t).

Following the notation of our earlier paper@9# we will
consider four cases: two-dimensional~2D! and three-
dimensional~3D! RT and RM. 2D flow is characterized by
wavelengthl and 3D flow by a tube radiusR. The RT insta-
bility is characterized by a constant accelerationg, and the
RM instability by a jump velocityDv. We denoteh~0! by
1063-651X/2003/67~2!/026319~7!/$20.00 67 0263
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h0 , define wave numberk52p/l, and Atwood numberA
5(r22r1)/(r21r1), wherer i is the density of fluidi with
the acceleration or jump velocity directed from the light flu
1 towards the heavier fluid 2. In the linear regime we ha

2D RT: h~ t !5h0 cosh~g t !, g5AgkA, ~1a!

3D RT: h~ t !5h0 cosh~g t !, g5Agb1A/R, ~1b!

2D RM: h~ t !5h0~11DvkAt!, ~2a!

3D RM: h~ t !5h0~11Dvb1At/R!, ~2b!

where b1'3.832, the first zero of the Bessel function
order one. Note that 2D and 3D reduce to the same exp
sions if we identifyk with b1 /R. This is not the identifica-
tion made by Layzer; furthermore, in the nonlinear regime
will no longer be true that 3D results can be obtained fro
2D results simply by identifyingk with b1 /R.

The interface in 2D geometry is given byy0(x0)
5h0 cos(kx0), wherey and x refer to the vertical and hori-
zontal spatial dimensions that are parallel and perpendicu
respectively, to the direction of the acceleration or the sho
In 3D geometry, also called tubular flow~see Fig. 1 in Ref.
@7#!, the interface has the shapez0(r 0)5h0J0(b1r 0 /R)
wherez is the direction of the flow,r is in the radial direc-
tion, andJ0 is the Bessel function of order zero. Equatio
~1! and ~2! are valid only in the linear, i.e., small-amplitud
regime defined byhk!1 and hb1 /R!1 for 2D and 3D
geometries, respectively. In this linear regime all results
be generalized from theA51 case to arbitraryA simply by
replacingg ~or DV) by gA ~or DVA). Again, this simple rule
will no longer be true in the nonlinear regime~see below!.
Equations~1a!, ~1b!, ~2a!, and ~2b! were derived in Refs.
@1,2,7,9#, respectively. In addition to linearity, the abov
equations, like all equations in this paper, assume inco
pressible fluids.

Additional assumptions are necessary to obtain soluti
in the nonlinear regime. For this purpose Layzer’s model@7#
©2003 The American Physical Society19-1
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KARNIG O. MIKAELIAN PHYSICAL REVIEW E 67, 026319 ~2003!
has been most fruitful. It assumes potential flow with t
potential given by the first term in its Fourier expansion, a
this is also the basis of our work@9#. It yields a second-orde
ordinary nonlinear differential equation. The model has be
used extensively and compared successfully with hydroc
simulations. These comparisons have always relied on
numerical solution of the above-mentioned differential eq
tion. What is new in this paper is that we presentanalytic
solutions@Eqs.~3! and ~10! below#.

An alternate and somewhat adhoc, yet highly reasona
approach is attributed to Fermi by Layzer@7#: Assume that
one knows the asymptotic bubble velocityḣ` ~in Fermi’s
time this was still under some dispute!, then one may join the
linear to the nonlinear regime by making an abrupt chang
the growth rateḣ. In other words, use the exponential
growing ḣ linear until it is equal to the asymptotic bubble ve
locity at which pointḣ is replaced by the constantḣ` . We
will compare our model with Fermi’s model.

The rest of this paper treats the extension of Eqs.~1! and
~2! to the nonlinear regime whereh(t) denotes the bubble
amplitude, i.e., the penetration depth of the light fluid in
the heavier fluid. Dimensional considerations indicate t
there are only two independent parameters:h0k ~or
h0b1 /R) andA. In other words, if we scaleh by k and t by
Agk for 2D RT, then the function we are seeking can
written ashk(Agkt;h0k,A). It is similar for RM, where we
scalet by Dvk.

We provide a brief summary. In Fermi’s model@7# h is
given by the linear regime untilḣ5ḣ` , where ḣ` is the
asymptotic bubble velocity, after whichh is given by solving
ḣ5ḣ` . In our modelh is given by the linear regime unti
h51/3k ~or R/2b1 in 3D!, after whichh is given by a gen-
eralizied Layzer-type solution. Clearly, the transition fro
the linear to the nonlinear regime is based onḣ in Fermi’s
model and onh in ours. The asymptotic bubble velocity i
both models is the same. Both models provide explicit a
lytic expressions whereh and ḣ vary continuously, as they
must, during and after the transition. Although Fermi su
gested his model for the RT case because at that time the
instability was not yet identified~Richtmyer’s paper ap-
peared some five years after Layzer’s!, one can extend his
principle to the RM case also. We find that for the RT ca
both models agree well with each other and with numer
simulations. For the RM case, however, Fermi’s model p
dicts larger amplitudes while numerical simulations supp
the smaller amplitudes of our model.

In Sec. II we consider the RT case. The RM case is c
sidered in Sec. III. The models are compared with numer
simulations using theCALE hydrocode@10# in Sec. IV where
we also present our conclusions.

II. RT

It is interesting that the primary motivation for Layzer
develop his potential flow model was to compare with a
evaluate Fermi’s model, much as we are doing now. Lay
found @7# that Fermi’s model ‘‘is never in error by more tha
about 25 per cent.’’ Fermi’s model is, needless to say, h
ristic yet highly plausible. Layzer’s method, on which th
02631
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paper is based, can be described as using a simple pote
in the fully nonlinear hydrodynamic equations. Despite
simplicity he could find analytically only the first integra
(ḣ) and had to resort to numerical integration to find t
second integral~h! and compare it with Fermi’s model~see
Fig. 2 in Ref.@7#!. In retrospect, one can trace the difficul
of obtaining a second integral to Layzer’s assumption
h050 which he presumably made on the basis of simplic
When we extended Layzer’s work to arbitraryh0 we found
@9# that a first integral could still be derived analytically fo
any h0 . But what is more important and forms the crux
the present work, we discovered that ifh0 had a special
value given by 1/3k in 2D andR/2b1 in 3D, then a second
integration could be performed analytically to obtainh(t)
explicitly.

Layzer’s work and our extension of it were limited to on
fluid only, i.e., A51. Recently Goncharov made a furth
extension to arbitraryA @11#. By analyzing his Eq.~8! for 2D
and Eq. ~18! for 3D we found first and second integra
analytically for the same special values ofh0 :

2D RT: h~ t !5h01
31A

3~11A!k
ln

3$cosh@„6gkA~11A!…1/2t/~31A!#

1~ ḣ0 /ḣ`!

3sinh@„6gkA~11A!…1/2t/~31A!#%,

~3a!

3D RT: h~ t !5h01
2R

b1~11A!
ln

3$cosh@„gb1A~11A!/2R…1/2t#1~ ḣ0 /ḣ`!

3sinh@„gb1A~11A!/2R…1/2t#%. ~3b!

These equations yield the following asymptotic bubble v
locities in agreement with Goncharov@11# and Oronet al.
@12#:

2D RT: ḣ`5A 2gA

3~11A!k
, ~4a!

3D RT: ḣ`5A 2gAR

~11A!b1
. ~4b!

For A51 all equations in this paper reduce to their cor
sponding ones in Ref.@9#. In fact, we obtained the abov
solutions by the following transformation. Start with Eq.~7a!
of Ref. @9# for A51 and let

g→Aga,

k→ 8~11A!

~31A!2 k/a, ~5a!

h→ ~31A!

4
ha
9-2
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EXPLICIT EXPRESSIONS FOR THE EVOLUTION OF . . . PHYSICAL REVIEW E 67, 026319 ~2003!
to obtain Eq.~3a! above. Herea is an arbitrary paramete
and the fact that Eq.~3a! is independent ofa reflects the
scaling behavior ofhk(Agkt;h0k,A) discussed in Sec. I. Fo
3D the transformation

g→Aga,

R→ 2Ra

11A
, ~5b!

h→ha

converts Eq.~7b! of Ref. @9# into Eq. ~3b! above.
In the model proposed here we use Eq.~1a! until t5t*

whenh5h* 51/3k, i.e.,

t* 5
1

g
lnH 1

3h0k
1AS 1

3h0kD 2

21J ,

h* 51/3k5h0 cosh~gt* !,

ḣ* 5h0g sinh~gt* !, ~6!

whereg5AgkA and h05h(t50) is the actual initial am-
plitude here assumed to be less than or equal to 1/3k, so
there is some growth in the linear regime as given by
~1a!. At t5t* we switch to Eq.~3a! in which we replaceh0
by h* , t by t2t* , and ḣ0 by ḣ* , thus assuring the conti
nuity of h and ḣ. A similar procedure is followed for 3D
perturbations.

We now turn to Fermi’s model given by linear growt
Eq. ~1a!, until ḣ5ḣ` . Therefore,

tF* 5
1

g
lnH ḣ`

h0g
1AS ḣ`

h0g D 2

11J ,

hF* 5h0 cosh~gtF* !5h0AS ḣ`

h0g D 2

11,

ḣF* 5ḣ` . ~7!

Of course the growth aftertF* is given by

h~ t !5hF* 1ḣ`~ t2tF* !. ~8!

Comparing Eqs.~6! and ~7!, it is clear that the transition
occurs later and therefore at a larger amplitude in Ferm
model. A good estimate of how much later is given by

g~ tF* 2t* !'
1

2
lnS 6

11AD ~9!

assumingh0k!1. In other words, the transition in Fermi
model is delayed by about 1/2 to 1e-folding time.

Despite ~or because of! this difference, the two model
predict very similar behavior in amplitude. The reason is t
there are compensating differences: In Fermi’s model
transition from the linear regime is later but the saturati
by which we meanḣ5ḣ` , is immediate, while in our mode
02631
.
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the transition is earlier but the saturation occurs later as gi
by Eq. ~3a! @compare with Eq.~8!#.

In Fig. 1 we compare the two models for low and hig
Atwood numbers,A50.1 andA50.9, respectively. For each
A we plot hk as a function ofAgkt for two initial ampli-
tudes:h0k51/6 and 1/3. A comparison at intermediateA will
be given in Sec. IV and compared with numerical simu
tions. It is clear from Fig. 1 that both models predict ve
similar h(t).

III. RM

As pointed out by Richtmyer@2# the effect of a shock can
be treated as the impulsive acceleration of incompress
fluids in which the effect of compressibility can be account
for by using postshock amplitudes and Atwood numbers.
will adopt this approach, although there are rare cases w
it fails @13#. Equation~2! gives the evolution in the linea
regime. The nonlinear regime reduces to the RT probl
with g50. The resulting simplification allowed us to obta
first and second integrals for arbitraryh0 ~see Eqs.~10!–~15!
in Ref. @9#!. However, the solutions forh0k5 1

3 or h0b1 /R
5 1

2 were so simple that we propose using the same appro
as in the previous RT section: Use the linear results untih
51/3k or R/2b1 , at which time we switch to the following
equations:

2D RM: h~ t !5h01
31A

3~11A!k
ln

3$113ḣ0kt~11A!/~31A!%,

~10a!

and

FIG. 1. Comparison of the present model~continuous curves!
with Fermi’s model~dotted curves! for the RT case. In the lower
four curvesA50.1 with h0k5

1
6 and 1

3. In the upper four curves
A50.9 with h0k5

1
6 and 1

3.
9-3
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KARNIG O. MIKAELIAN PHYSICAL REVIEW E 67, 026319 ~2003!
3D RM: h~ t !5h01
2R

~11A!b1
ln$11ḣ0b1t~11A!/2R%.

~10b!

These solutions are theg50 versions of Eqs.~3a! and~3b!,
respectively. For the asymptotic bubble velocities they gi

2D RM: ḣ`5
31A

3~11A!kt
~11a!

and

3D RM: ḣ`5
2R

~11A!b1t
. ~11b!

Our asymptotic velocities agree with the results of Or
et al. @12# and of Goncharov@11#.

More explicitly, we use Eq.~2a! until t5t* when h
5h* 51/3k, i.e.,

t* 5
1

DvkA S 1

3h0k
21D ,

h* 51/3k,

ḣ* 5h0DvkA, ~12!

whereh05h(t501) is the postshock amplitude andA is
the postshock Atwood number according to Richtmyer’s p
scription. At t5t* we switch to Eq.~10a! in which we re-
placeh0 by h* , t by t2t* , and ḣ0 by ḣ* , again assuring
the continuity ofh and ḣ. A similar procedure is followed
for 3D perturbations.

Before we turn to a Fermi-inspired model, let us note h
another model that illustrates the remarks made in Se
Zhang and Sohn@14# proposed solving the fully compress

FIG. 2. Same as Fig. 1 for the RM case.
02631
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ible linear equations given by Richtmyer that give a mo
accurate description of the early evolution than the sim
prescription given by Richtmyer himself. A similar mod
was proposed by Li and Zhang@15#. The difficulty, of
course, is that these equations must be solved numerical
was done by Richtmyer and, more recently, by Yang, Zha
and Sharp@16#. Second, by using second-order Pade´ ap-
proximants, the analytic part of the model in Ref.@14# is
limited to the weakly nonlinear regime~for example, one
obtains the wrong asymptotic velocity as pointed out ear
@9#!. More accurate results are obtained by Velikovich a
Dimonte @17# by going to much higher Pade´ approximants,
but now the higher-order terms, even for a single inco
pressible fluid, must be computed numerically.

We turn to a Fermi-type approach. Indeed, the power
Fermi’s model is that it can be applied to any instabil
whose ḣ` is known. Equating the right-hand side of E
~11a! to the linear growth rateh0DvkA we have

tF* 5
31A

3~11A!k2DvAh0
,

hF* 5h0S 11
31A

3~11A!kh0
D ,

ḣF* 5ḣ`~ t* !5ḣ05h0DvkA. ~13!

Note that sinceḣ` is time dependent we cannot use Eq.~8!
for t.t* . In fact the evolution fort.t* is given by thesame
equation as in our model, Eq.~10a!, in which h0 is replaced
by hF* and t by t2tF* . Since ḣ is constant in the linear
regime (5h0DvkA) we haveḣ* 5hF* 5ḣ0 in both models.
Therefore, the only difference between our model and F
mi’s model is the value oft* ~and henceh* ) where the
transition occurs.

As in the RT case, it is easy to see thattF* .t* and hF*
.h* ,

tF* /t* 5
31A

~11A!~123h0k!
, ~14!

and, assumingh0k!1, the transition occurs 2 to 3 times late
in Fermi’s model than ours and therefore at about 2 to
times larger amplitude.

Since there is no compensating difference here, Ferm
model predicts substantially larger amplitudes than ours
illustrated in Fig. 2. Numerical simulations presented in S
IV support the smaller amplitudes.

We close this section by noting that the formula

ḣ5
ḣ0

11ḣ0 /ḣ`
~15!

captures both 2D and 3D RM growth rates in the nonlin
regime@see Eqs.~10a!–~11b!#.
9-4
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IV. NUMERICAL SIMULATIONS AND CONCLUSIONS

Layzer’s model has been found to agree well with mo
accurate solutions requiring numerical integration. The ea
est comparison was reported by Birkhoff and Carter@18#
who found

ḣ`5~0.2360.01!Agl ~16!

for 2D RT andA51, compared withAgl/6p from Eq.~4a!.
Recent comparisons@19# continue to show good agreeme
~see also Refs.@9# and @11#!.

We have carried out 2D direct numerical simulations
RT and RM instabilities on theCALE hydrocode@10#. For RT
we chose the linear electric motor system of Dimonte a
Schneider@20# ~DS! with somewhat idealized conditions
The acceleration increases from 0 to 70g0 (g050.98
31023 cm/ms2) in 7 ms, after which it is kept constant a
that value. Three identical sinusoidal perturbations are in
ated at the center of the numerical tank, which is 7.3
wide, hence l'2.43 cm, with initial amplitudes h0
50.065 cm or 0.13 cm (h0k' 1

6 or 1
3!. We chose r1

50.66 g/cm3 and r251.87 g/cm3 corresponding to fill No.
31 in DS ~see the second paper in Ref.@20#!, henceA

FIG. 3. Snapshots from aCALE simulation: g570 g0

50.0686 cm/ms2, l52.43 cm,h050.13 cm. The width of the tank
is 7.3 cm or 33l. The upper fluid is hexane (r50.66 g/cm3), the
lower fluid is a water/NaI solution (r51.87 g/cm3). Snapshots at
t50, 15, 20, and 30 ms.
02631
e
i-

f

d

i-

'0.48. The calculations are stopped at 30 ms when
spikes approach the top of the 8.8-cm-long tank. Snaps
of the calculation forh0k5 1

3 are shown in Fig. 3.
To compare the simulation with analytical models, we u

FIG. 4. Comparison of hydrocode and analytic results for the
case withA50.48. The solid curves are from the model presen
in this paper, the dotted curves are from Fermi’s model, and
dashed curves are from theCALE simulations. The lower three
curves are forh050.065 cm; the upper three curves are forh0

50.13 cm. Snapshots from the hydrocode simulations are show
Fig. 3.

FIG. 5. Snapshots from aCALE simulation of a shock tube: a
Mach 1.2 shock in helium strikes the He/air interface with pert
bations ofl513 cm, h050.7 cm, located 122 cm away from th
endwall placed aty50. Snapshots att50, 1.5, 3.0, and 4.2 ms.
9-5
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a constantg(570g0) and, since the tank takes 7 ms to rea
this constant value we shift the origin of time by 3.5 ms.
Fig. 4 we display the bubble amplitude from the simulatio
Fermi’s model, and the present model. Clearly, the simu
tions and the models agree well with each other for
smaller as well as the larger amplitude.

For RM simulations we use the same extended versio
the Cal Tech shock tube@21# as in our earlier work: a Mach
1.2 shock propagating in He strikes a He/air interface w

FIG. 6. Comparison of hydrocode and analytic results for
RM case withA50.77. The solid curves are from the model pr
sented in this paper, the dotted curves are from Fermi’s model,
the dashed curves are from theCALE simulations. The lower three
curves are forh050.35 cm; the upper three curves are forh0

50.7 cm. Snapshots from the hydrocode simulations are show
Fig. 5.
n
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perturbations ofl513 cm ~two identical perturbations in a
26-cm-wide shock tube! andh050.35 cm or 0.70 cm (h0k
' 1

6 or 1
3!. The results for the high Atwood number He/X

system were reported in Ref.@9#. For the present He/air sys
tem Abefore50.76 andAafter'0.77. The jump velocity isDv
'15.8 cm/ms and, since the incident shock speed in H
Wi'121 cm/ms, the compression factor is 12Dv/Wi
'0.87. The interface is initially 122 cm away from the en
wall and, by 4.2 ms, is about 55 cm away from it. The c
culations are stopped at this time because a shock, refle
from the endwall, is only 5 cm away from the interface a
reshocks the interface shortly after 4.2 ms.

Snapshots from theCALE simulations are given in Fig. 5
In Fig. 6 we compare the bubble amplitudes from the sim
lations and the two models discussed in the preceding
tion. Fermi’s model clearly overestimates the growth wh
our model based onh* 51/3k shows good agreement wit
the simulations to within;10% for both the smaller and
larger amplitude runs.

To conclude, we have capitalized on the explicit analy
solutions found for special values ofh0 to transition continu-
ously from the linear to the nonlinear and far asympto
regimes. A similar transition can be done in Fermi’s mod
where the criterion for transition is based onḣ rather thanh.
The two models agree with each other and with simulatio
for the RT case, but for the RM case our model gives be
agreement with numerical simulations. We suggest us
Eqs.~3! and ~10! whenever explicit analytic expressions a
needed for RT and RM instabilities.
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