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Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov
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We present explicit analytic expressions for the evolution of the bubble amplitude in Rayleigh-{Ry)or
and Richtmyer-Meshkov RM instabilities. These expressions are valid from the linear to the nonlinear regime
and for arbitrary Atwood numbeh. Our method is to convert from the linear to the nonlinear solution at a
specific valuen* of the amplitude for which explicit analytic expressions have been given previoush for
=1 [K. O. Mikaelian, Phys. Rev. LetB0, 508(1998]. By analyzing a recent extension of Layzer’s theory to
arbitrary A [V. N. Goncharov, Phys. Rev. Let88, 134502(2002], we find a simple transformation that
generalizes our solutions to arbitrakyWe compare this model with another explicit model attributed to Fermi
and with numerical simulations. Fermi’s model agrees with numerical simulations for the RT case but its
extension to the RM case disagrees with simulations. The model proposed here agrees with hydrocode calcu-
lations for both RT and RM instabilities.
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I. INTRODUCTION, NOTATION, AND SUMMARY 70, define wave numbek=2x/\, and Atwood numbeA
=(po—p1)!(p2t+p1), Wherep; is the density of fluid with
The purpose of this paper is to present simple, explicitthe acceleration or jump velocity directed from the light fluid
and analytic expressions for the evolution of perturbations irll towards the heavier fluid 2. In the linear regime we have
Rayleigh-Taylor(RT) [1] and Richtmyer-Meshko{RM) [2]

instabilities from the linear to the nonlinear regime. These 2D RT: p(t)=mocoshiyt), y=vgkA, (13
instabilities have been extensively studied by analytical, nu- _

merical, as well as experimental techniqyi8s They have 3D RT: n(t)=mnocoshiyt), y=vgBA/R, (1D
important applications in astrophysic§4], inertial- _ _

confinement fusiofi5], and industry6]. Despite this body of 2D RM: 77(t) = no(1+AvkAD), (2a
work we know of only one other analytic model that covers 3D RM: 7(t) = 70(1+ Av B,AUR), (2b)

the linear as well as the nonlinear evolution explicitly, and it

is the model that Layz€ji7] attributed to Fermi. where 8,~3.832, the first zero of the Bessel function of
RT and RM instabilities arise at the interface between twoyder one. Note that 2D and 3D reduce to the same expres-
fluids subjected to a constant acceleration and a shock, r&jons if we identifyk with 8, /R. This is not the identifica-
spectively. The linear regime, during which the perturbationtjon made by Layzer; furthermore, in the nonlinear regime it
amplitude » remains much smaller than the perturbationwill no longer be true that 3D results can be obtained from
wavelength, is well at hand as given by the original inves- 2D results simply by identifyind with 3;/R.
tigators[1,2]. Much of the subsequent research has focused The interface in 2D geometry is given byy(Xo)
on the nonlinear regimébut not all: issues of density gradi- = 7, coskx,), wherey and x refer to the vertical and hori-
ents, ablation, compressibility, convergence, viscosity, matezontal spatial dimensions that are parallel and perpendicular,
rial strength, etc., have been and continue to be actively rerespectively, to the direction of the acceleration or the shock.
searched in the linear regime; in this paper we ignore all sucin 3D geometry, also called tubular floggee Fig. 1 in Ref.
effecty. Consequently, a great deal has been learned abolit]), the interface has the shapg(rq)= 70Jo(B1ro/R)
the nonlinear regime. However, with the exception of Fer-wherez is the direction of the flowr is in the radial direc-
mi's model noted above, we know of no explicit analytic tion, andJ, is the Bessel function of order zero. Equations
model that describes the complete evolution. (1) and(2) are valid only in the linear, i.e., small-amplitude
There are, of course, several methods or models in whichegime defined bypk<1 and »B8;/R<1 for 2D and 3D
the solution to our problem is found by solving numerically geometries, respectively. In this linear regime all results can
an ordinary or partial differential equati@), or by perform-  be generalized from thA=1 case to arbitranA simply by
ing a sum over a large or infinite number of terf8. Our  replacingg (or AV) by gA (or AVA). Again, this simple rule
emphasis is on explicit analytical expressions #dgt). will no longer be true in the nonlinear reginisee below.
Following the notation of our earlier papg®] we will Equations(1a), (1b), (2a), and (2b) were derived in Refs.
consider four cases: two-dimension&D) and three- [1,2,7,9, respectively. In addition to linearity, the above
dimensional3D) RT and RM. 2D flow is characterized by a equations, like all equations in this paper, assume incom-
wavelengthh and 3D flow by a tube radiuR. The RT insta-  pressible fluids.
bility is characterized by a constant acceleratgprand the Additional assumptions are necessary to obtain solutions
RM instability by a jump velocityAv. We denoten(0) by  in the nonlinear regime. For this purpose Layzer’s md@d¢!
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has been most fruitful. It assumes potential flow with thepaper is based, can be described as using a simple potential
potential given by the first term in its Fourier expansion, andn the fully nonlinear hydrodynamic equations. Despite its
this is also the basis of our wofR]. It yields a second-order simplicity he could find analytically only the first integral
ordinary nonlinear differential equation. The model has beerf#) and had to resort to numerical integration to find the
used extensively and compared successfully with hydrocodsecond integra{z) and compare it with Fermi's modésee
simulations. These comparisons have always relied on thEig. 2 in Ref.[7]). In retrospect, one can trace the difficulty
numerical solution of the above-mentioned differential equaof obtaining a second integral to Layzer’s assumption of
tion. What is new in this paper is that we presanglytic  7,=0 which he presumably made on the basis of simplicity.
solutions[Egs. (3) and (10) below. When we extended Layzer’s work to arbitrany we found
An alternate and somewhat adhoc, yet highly reasonablg9] that a first integral could still be derived analytically for
approach is attributed to Fermi by LayZéf]: Assume that any 7,. But what is more important and forms the crux of
one knows the asymptotic bubble velocity, (in Fermi’s  the present work, we discovered thatsf, had a special
time this was still under some displitéhen one may join the value given by 1/R in 2D andR/23; in 3D, then a second
linear to the nonlinear regime by making an abrupt change imtegration could be performed analytically to obtait)
the growth raten. In other words, use the exponentially explicitly.
growing 7jineqr Until it is equal to the asymptotic bubble ve-  Layzer’s work and our extension of it were limited to one
locity at which point# is replaced by the constant.. We  fluid only, i.e., A=1. Recently Goncharov made a further
will compare our model with Fermi’'s model. extension to arbitranA [11]. By analyzing his Eq(8) for 2D
The rest of this paper treats the extension of E¢jsand  and Eg.(18) for 3D we found first and second integrals
(2) to the nonlinear regime wherg(t) denotes the bubble analytically for the same special values f:
amplitude, i.e., the penetration depth of the light fluid into
the heavier fluid. Dimensional considerations indicate that 2D RT: n(t)= not 3+A n
there are only two independent parameterggk (or -7 o 3(1+A)k
170B1/R) andA. In other words, if we scale by k andt by 1
Jgk for 2D RT, then the function we are seeking can be x{costi(6gkA(1+A))/(3+A)]

written asyk(\/gkt; 7ok, A). It is similar for RM, where we + (70! 72)
scalet by Avk.

We provide a brief summary. In Fermi's modél] 7 is X sint (6gkA(1+A)Y2/(3+A) T},
given by the linear regime untih= 7., where 7, is the (33

asymptotic bubble velocity, after whichis given by solving

7= 7. . In our model is given by the linear regime until 2R
n=1/3k (or R/2p3; in 3D), after which7 is given by a gen- 3D RT: #5(t)=no+ m'n
eralizied Layzer-type solution. Clearly, the transition from !

the linear to the nonlinear regime is based @iin Fermi’s x {cosh (gB1A(1+A)2R)Y2 ]+ (g/ 7..)
model and ony in ours. The asymptotic bubble velocity in ) N
both models is the same. Both models provide explicit ana- X sinf{(gB1A(1+A)2R) M1} (3b)

lytic EXpressions wherg and 7 vary continuously, as t.hey These equations yield the following asymptotic bubble ve-
must, during and after the transition. Although Fermi sug- cities in agreement with Gonchard1] and Oronet al.

gested his model for the RT case because at that time the R 2
instability was not yet identified Richtmyer’s paper ap- '

peared some five years after Layzgrsne can extend his 2gA

principle to the RM case also. We find that for the RT case 2D RT: 75.= 1L MK (4a)
both models agree well with each other and with numerical ( )

simulations. For the RM case, however, Fermi's model pre-

dicts larger amplitudes while numerical simulations support 3D RT: 7,.= 1 / 29AR _ (4b)
the smaller amplitudes of our model. - (1+A)B:

In Sec. Il we consider the RT case. The RM case is con- ) ) ) )
sidered in Sec. lll. The models are compared with numericaf©" A=1 all equations in this paper reduce to their corre-

simulations using theALE hydrocode[10] in Sec. IV where ~ sPonding ones in Re{9]. In fact, we obtained the above
we also present our conclusions. solutions by the following transformation. Start with Ed@a)

of Ref.[9] for A=1 and let

It is interesting that the primary motivation for Layzer to 8(1+A)
develop his potential flow model was to compare with and k— ———kla, (5a)
evaluate Fermi’s model, much as we are doing now. Layzer (3+A)
found[7] that Fermi's model “is never in error by more than
about 25 per cent.” Fermi's model is, needless to say, heu- . (3+A) w
ristic yet highly plausible. Layzer’s method, on which this 7 4 7
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to obtain Eq.(3a above. Herex is an arbitrary parameter R a2
and the fact that Eq(3a) is independent ofx reflects the ] 4"
scaling behavior of7k(\/gkt; 70k,A) discussed in Sec. I. For
3D the transformation

g—Aga,

R 2Ra 54
1A (50)

n—na

converts Eq(7b) of Ref.[9] into Eqg. (3b) above.
In the model proposed here we use Etg) until t=t*
when n=7*=1/3, i.e.,

1I 1 . 1 )2 L
" 370k 370k '

172
—1/3k= 775 cosh{ yt*), (gk)*’%

FIG. 1. Comparison of the present modebntinuous curves
with Fermi's model(dotted curvegfor the RT case. In the lower
four curvesA=0.1 with nok=% and 3. In the upper four curves
A=0.9 with 70k=¢ and3.

7* = 7oy sinh(yt*), (6)

where y=\gkA and 7,= 7(t=0) is the actual initial am-
plitude here assumed to be less than or equal t&,1$8
there is some growth in the linear regime as given by Eq
(1a). At t=t* we switch to Eq(3a) in which we replacey,
by #»*, t by t—t*, and 5 by 7*, thus assuring the conti-
nuity of » and . A similar procedure is followed for 3D
perturbations.

We now turn to Fermi’s model given by linear growth,
Eq. (1), until = 7., . Therefore,

the transition is earlier but the saturation occurs later as given
by Eg. (3@ [compare with Eq(8)].

In Fig. 1 we compare the two models for low and high
Atwood numbersA=0.1 andA=0.9, respectively. For each
A we plot 7k as a function of/gkt for two initial ampli-
tudes:nok=1/6 and 1/3. A comparison at intermediatevill
be given in Sec. IV and compared with numerical simula-

tions. It is clear from Fig. 1 that both models predict very
th = [ - ) +1¢, similar 7(t).
770?’
7 . RM
= 10 COSHYtE) = 70 ( — + 1 As pointed out by Richtmydi2] the effect of a shock can
be treated as the impulsive acceleration of incompressible
= e (7)  fluids in which the effect of compressibility can be accounted
for by using postshock amplitudes and Atwood numbers. We
Of course the growth aftei* is given by will adopt this approach, although there are rare cases where
it fails [13]. Equation(2) gives the evolution in the linear
()= nt + p.(t—t¥). (8) regime. The nonlinear regime reduces to the RT problem

with g=0. The resulting simplification allowed us to obtain
Comparing Eqs(6) and(7), it is clear that the transition first and second integrals for arbitrany (see Eqs(10)—(15)
occurs later and therefore at a larger amplitude in Fermi'sn Ref. [9]). However, the solutions fofk=3 or 793,/R
model. A good estimate of how much later is given by =1 were so simple that we propose using the same approach
as in the previous RT section: Use the linear results uptil

Y(tE—t*)~ Eln( 6 ©) = 1/3k_ or I_?/Zﬁl, at which time we switch to the following
1+A equations:
assumingznok<1. In other words, the transition in Fermi’s _ 3+A
model is delayed by about 1/2 toetfolding time. 2D RM: n(t)=no+ 3(1+A)k|n
Despite (or because 9fthis difference, the two models )
predict very similar behavior in amplitude. The reason is that X{1+37nokt(1+A)/(3+A)},
there are compensating differences: In Fermi’s model the (109

transition from the linear regime is later but the saturation,
by which we meary= 7.., is immediate, while in our model and
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3 ottt bl ol b _ ible linear equations given by Richtmyer that give a more
! accurate description of the early evolution than the simple
prescription given by Richtmyer himself. A similar model
was proposed by Li and Zhanfl5]. The difficulty, of
course, is that these equations must be solved numerically as
was done by Richtmyer and, more recently, by Yang, Zhang,
and Sharp[16]. Second, by using second-order Paaje
proximants, the analytic part of the model in Rgf4] is
limited to the weakly nonlinear regime(for example, one
obtains the wrong asymptotic velocity as pointed out earlier
[9]). More accurate results are obtained by Velikovich and
Dimonte[17] by going to much higher Padepproximants,
but now the higher-order terms, even for a single incom-
pressible fluid, must be computed numerically.

We turn to a Fermi-type approach. Indeed, the power of
Fermi's model is that it can be applied to any instability
whose 7., is known. Equating the right-hand side of Eq.
(119 to the linear growth ratejpAvkA we have

Avkt o 3+A
F= p) )
FIG. 2. Same as Fig. 1 for the RM case. 3L+ A AvAT
2R . 3+A
: = ) = 1+ —m——
3D RM: 7(t)=no+ mm{l"r 0Bt (1+A)/2R}. M= 7o 3(1+A)k7g)’
(10b)

tk *\ — - —
These solutions are thge=0 versions of Eqs(3a) and (3b), 7F = 7(17) = 190= noAvkA. (13

respectively. For the asymptotic bubble velocities they give
Note that sincey., is time dependent we cannot use ER).

) 3+A for t>t*. In fact the evolution fot>t* is given by thesame
2D RM: =T 31+ Akt (113 equation as in our model, E¢LO3, in which 7, is replaced
by »f andt by t—tf . Since 7 is constant in the linear
and regime (= noAvkA) we haven* = 5§ = 779 in both models.
R Therefore, the only difference between our model and Fer-
Co mi's model is the value of* (and hencen*) where the
3D RM: T (1 A) Bt (119 transition occurs.

_ B _ As in the RT case, it is easy to see that-t* and 7¢
Our asymptotic velocities agree with the results of Oron- 7%,

et al. [12] and of Goncharoy11].
More explicitly, we use Eq.2a until t=t* when 7 34 A

— =1, ie., * e —
I = A =3 p00)” a4

- shalsbr
t AvkA\ 3ok 1), and, assumingyyk<<1, the transition occurs 2 to 3 times later
in Fermi’s model than ours and therefore at about 2 to 3
n* =1/3k, times larger amplitude.
Since there is no compensating difference here, Fermi’s
7* = noAvkA, (12 model predicts substantially larger amplitudes than ours, as

illustrated in Fig. 2. Numerical simulations presented in Sec.

where 7= 7(t=0+) is the postshock amplitude amdis |V support the smaller amplitudes.
the postshock Atwood number according to Richtmyer’s pre- We close this section by noting that the formula
scription. Att=t* we switch to Eq.(109 in which we re-
place n, by »*, t by t—t*, and 5, by #»*, again assuring
the continuity of» and #. A similar procedure is followed
for 3D perturbations.

Before we turn to a Fermi-inspired model, let us note here
another model that illustrates the remarks made in Sec. taptures both 2D and 3D RM growth rates in the nonlinear
Zhang and Sohfl4] proposed solving the fully compress- regime[see Eqs(109—(11b)].

7o

=T 50l (15
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—-20 0'.ﬁ...,.........,
% 0 5 10 15
(gk)llzt |
-25 FIG. 4. Comparison of hydrocode and analytic results for the RT
case withA=0.48. The solid curves are from the model presented
in this paper, the dotted curves are from Fermi’'s model, and the
T T dashed curves are from theaLe simulations. The lower three
0 5 curves are fornpy,=0.065 cm; the upper three curves are figy
=0.13 cm. Snapshots from the hydrocode simulations are shown in
x(cm) Fig. 3.

_ . ~0.48. The calculations are stopped at 30 ms when the
FIG. 3. Snapshots from acALe simulation: g=70 go  spikes approach the top of the 8.8-cm-long tank. Snapshots
=0.0686 cm/m%; A=2.43 cm,77=0.13 cm. The width of the tank of the calculation fornok:% are shown in F|g 3.

is 7.3 cm or 3<\. The upper fluid is hexanep(=0.66 g/cnd), the To compare the simulation with analytical models, we use
lower fluid is a water/Nal solutiong=1.87 g/cni). Snapshots at

t=0, 15, 20, and 30 ms.
120
IV. NUMERICAL SIMULATIONS AND CONCLUSIONS ylem)
Layzer's model has been found to agree well with more 110
accurate solutions requiring numerical integration. The earli-
est comparison was reported by Birkhoff and Calft&8] 100
who found
_ I 90 ‘
7-=(0.230.01) g\ (16)
e 80
for 2D RT andA=1, compared with/g\/67 from Eq. (4a). I
Recent comparisond 9] continue to show good agreement
(see also Refd9] and[11]). 70
We have carried out 2D direct numerical simulations of
RT and RM instabilities on theAaLE hydrocoddg 10]. For RT 50 l
we chose the linear electric motor system of Dimonte and
Schneider[20] (DS) with somewhat idealized conditions: 50
The acceleration increases from 0 togg0(gy=0.98 T
%1073 cm/m$) in 7 ms, after which it is kept constant at o 10 20
that value. Three identical sinusoidal perturbations are initi- x(cm)
ated at the center of the numerical tank, which is 7.3 cm
wide, hence N\~2.43cm, with initial amplitudes 7, FIG. 5. Snapshots from aaLE simulation of a shock tube: a

=0.065cm or 0.13 cm #ok=z or 3). We ch0§e P1 Mach 1.2 shock in helium strikes the He/air interface with pertur-
=0.66 g/cni and p,=1.87 g/cni corresponding to fill No.  bations ofx =13 cm, 7,=0.7 cm, located 122 cm away from the
31 in DS (see the second paper in R¢R0]), henceA  endwall placed ay=0. Snapshots =0, 1.5, 3.0, and 4.2 ms.
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ey perturbations o\ =13 cm (two identical perturbations in a
26-cm-wide shock tubeand 77=0.35 cm or 0.70 cm #gk
~% or %). The results for the high Atwood number He/Xe
system were reported in R€B]. For the present He/air sys-
tem Apetore=0.76 andAe~0.77. The jump velocity is\v
~15.8 cm/ms and, since the incident shock speed in He is
W;~121 cm/ms, the compression factor is—Auv/W,
~0.87. The interface is initially 122 cm away from the end-
wall and, by 4.2 ms, is about 55 cm away from it. The cal-
culations are stopped at this time because a shock, reflected
from the endwall, is only 5 cm away from the interface and
reshocks the interface shortly after 4.2 ms.
Snapshots from theALE simulations are given in Fig. 5.
In Fig. 6 we compare the bubble amplitudes from the simu-
lations and the two models discussed in the preceding sec-
tion. Fermi's model clearly overestimates the growth while
our model based om* =1/3k shows good agreement with
S —— the simulations to within~10% for both the smaller and
0 10 20 30 larger amplitude runs. o . .
Avkt To conclude, we have capitalized on the explicit analytic
solutions found for special values gf, to transition continu-
FIG. 6. Comparison of hydrocode and analytic results for theously from the linear to the nonlinear and far asymptotic
RM case withA=0.77. The solid curves are from the model pre- regimes. A similar transition can be done in Fermi's model
sented in this paper, the dotted curves are from Fermi's model, anghere the criterion for transition is based pmather than.
the dashed curves are from tbeLe simulations. The lower three The two models agree with each other and with simulations
curves are fory=0.35cm; the upper three curves are fg5  for the RT case, but for the RM case our model gives better
:.0.7 cm. Snapshots from the hydrocode simulations are shown 'ﬁgreement with numerical simulations. We suggest using
Fig. 5. Egs.(3) and(10) whenever explicit analytic expressions are

a constang(=70g,) and, since the tank takes 7 ms to reachnee‘jed for RT and RM instabilities.

this constant value we shift the origin of time by 3.5 ms. In

Fig. 4 we display the bubble amplitude from the simulations, ACKNOWLEDGMENTS
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